298 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO. 2, FEBRUARY 1992

Study of a Fabry-Perot Cavity in the Microwave
Frequency Range by the Boundary
Element Method
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Abstract—In order to describe very closely the operation of a
quasi-optical multidiode oscillator using a Fabry-Perot cavity,
each component must be modeled. This paper presents the de-
scription of such a cavity by the Boundary Element Method
(BEM).

The difficulties of adapting classical models to this practical
case are discussed in the first part of the paper and justify the
use of a more complete and flexible method such as the three
dimensional Boundary Element Method. Two levels of ap-
proach are succinctly described in the second part. The first
one, which has been called zero order, is quite classical. The
second one is the most original part of the study and has been
called the Second Order Approach. The evolution of the com-
puted results as a function of the number and the distribution
of the meshes is given in the last part. They are compared to
analytical results and measurements.

I. INTRODUCTION

INCE THE emergence of solid state microwave

sources, many studies have been made to improve their
performance. Nowadays, in the millimetric frequency
range, such solid state oscillators are a good alternative
in cases where low power capabilities are required. In or-
der to obtain higher power levels, the concept of multi-
diode oscillators was introduced in 1970 by Kurokawa [1].
Since then, several solutions have been proposed, but
generally these solutions are not usable in the millimetric
wavelength range because of mechanical problems.

The design of power adders using quasi-optical reson-
ators does not seem to be limited by such problems [2],
[3]. However the mastering of all the design problems
requires great accuracy in the determination of the elec-
tromagnetic characteristic of the device. In relation with
the general problem of power adding in the millimetric
wavelength range, this paper deals with the modeling of
a Fabry-Perot resonator by the Boundary Element Method
(BEM).

In the first part, we discuss the classical approach of
quasi-optical cavities and present the limitations to their
application in the case under study. In the second part,
the basis of the BEM is recalled and its application to the
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Fabry-Perot resonator is presented. Two levels of ap-
proach, corresponding to different levels of approxima-
tion are presented: the second one is the improvement to
the method that we propose. In the last part of the paper,
theoretical results are compared to experimental data.

II. MoDELING OF THE QUASI-OPTICAL CAVITY: THE
CLASSICAL APPROACH

The model which is classically used to describe the Fa-
bry-Perot cavity was mainly developed in the sixties for
MASER cavities characterization. Assuming certain hy-
potheses, analytical formulation enables the main char-
acteristics to be determined: that is to say, the resonance
frequencies, and the field pattern of each mode. The sim-
plifying hypotheses suppose that the solutions are similar
to those of plane waves, and lead to different formulations
according to the way that the problem is treated.

For the formulation proposed by A. G. Fox and T. Li
[4] the evolution of the electromagnetic fields is followed
during a ‘‘there and back journey’’ into the cavity. Start-
ing from one reflector, the electromagnetic fields succes-
sively undergo a diffraction, from the first reflector to the
second one, then a reflection off the second reflector, a
diffraction towards the first reflector, to be finally re-
flected of it. If the phases are identical before and after
the journey, the cavity resonates. The previous simplify-
ing hypotheses, applied to this formulation, lead to the
Huygens-Fresnel hypothesis [5]: the diffraction angles are
very small.

Another way to formulate the problem is to solve the
Helmholtz equation [6] directly. The simplifying hypoth-
esis now expresses that the propagating constant of each
mode is 2w /N, where \ is the wavelength at the resonat
frequency. These two formulations give the same results.

A generalization of these formulations has been given
by G. Goubau and F. Schwering [7] to take into account
the diffraction losses on the reflectors; the solution is ex-
pressed as a series of cylindrical waves.

In order to characterize modes, it is possible to repre-
sent these by their current distribution in the mirrors.
Some examples of two types of modes are presented in
Fig. 1. Two kinds of representations of the current distri-
bution are given in the paper: with arrows which gives the
module and the direction of current lines over the mirrors
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Fig. 1. Current distribution for (a) a Guassian mode and (b) for two loss
modes.

and a meshed representation which only gives the module
of the currents.

In the case of low-loss modes, the use of the analytical
model leads to very good results for determining the char-
acteristics of the resonant modes of the cavity. To be able
to optimize the operation of the power adder using a quasi-
optical cavity, the entire device must be modeled. In such
a device the cavity is no longer isolated but is coupled to
sources and to a load by coupling elements which will
disturb the operation of the cavity. Classical models are
not very easy to adapt to this practical case, because they
do pot have the flexibility of numerical methods, espe-
cially when the latter describe the structures by a mesh-
ing. We have chosen to apply the BEM to this problem
and we present the results obtained with a Fabry-Perot
cavity. The aim of this paper is not only to give a new
description of this kind of cavity, but to demonstrate the
applicability of this numerical method to such a structure.
Reliability is verified by a comparison with the analytical
approach and with experimental results.

II. DESCRIPTION OF THE METHOD
A. General Points

Today, numerical methods are widely used to solve
physical problems in various areas such as elastostatics or
electromagnetism. The Finite-Element Method is cer-
tainly the most well-known of all; it allows very compli-
cated structures to be described with very great accuracy.
However, it often requires a very large computer memory
to solve the final matrix equation: the structure must be
described in its entirely.

The BEM was proposed in the 80’s [8] in order to rep-
resent a structure through its discontinuities: only the
boundary conditions are written. Thus the problem can be
treated with one dimension loss by the BEM than by the
Finite-Element Method. The discontinuities are treated by
the BEM as radiating apertures: the superposition of the
fields radiated by the discontinuities, allows the fields to
be determined everywhere on the structure, and in partic-

ular on the discontinuities themselves, when a set of in-
tegral equations is required. For example, when discon-
tinuities are infinitely conductive metallic planes, we have
AxXE =0
L - . (N
n-H =0
The radiated fields E and H are expressed in terms of
fictitious sources, through the Green functions [9]:
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E(r'") and H (r') are the electric and magnetic fields,
radiated by the aperture of surface S.
7 is the normal vector to dS.

¥ is the Green function: ¥ = exp (—jkR)/R in the
three dimensional case.

If no external field is applied, the boundary conditions
(1) applied to (2) gives

1Er(r') _ L SS (R x Hr) x V¥, r'ydS (3)
2 41

and assuming 7 = 7 x H, to be the electric current on
the discontinuities, (3) becomes
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The currents through the metallic parts of the resonator
are described by (4). If J # O the latter expresses the
existence of a resonant mode.

The aim of the BEM is to solve such an equation.

B. Discretization of the Structure

The first step consists of discretizing the structure on a
meshing, and projecting the (4) onto it. Equation (4) can
then be transformed into

N
JigH = —1—, SS Al x (JI() x V¥, 1) dS
SJ

)

where N represents the number of meshes. And using
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In the previous system the index ‘‘i’’ refers to the point
where the current is calculated, and the index ‘‘j”’ to the
sources of the fields. The calculated currents are linked
field sources by Af);fﬁ (with (@, ) = 1 - -+ 3), whose
values are listed as follows:
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C. Transformation of the Integral System Into a Linear
System

System (7) is an eigen integral system, with ““1 + j0O*’
as the eigenvalue. Such a system, with this form, is not

easily computable. This step is intended to transform the
latter into a linear system, assuming some simplifying hy-
potheses on 7.

Two simplifying levels can be considered:

The zero order approach is very close to the description
presented by W. Geyi and W. Hongshi [10]. They have
applied this description to rectangular, cylindrical and
spherical cavity resonators.

The second order approach, which is the most original
part of the study, enables the accuracy of the results ob-
tained to be improved. In this way the description is more
realistic and more complete than the former.

D. The Zero Order Approach

For a zero order approach, the electric current 7 is as-
sumed to be constant on the mesh. This allows J&, J ’y and
J, to be extracted from the integrals of the previous sys-
tem. Thus, the latter can be expressed as

| I By By B\ [,
5 Jy | =By B, By, J |- 13)
J: By1 Bsa Bys/ \J.
In this equation, the B; (i, j = 1 - - - 3) are complex,

and only depend on k = k' + jk”, the propagation con-
stant throughout the Green function ¥: this is the un-
known factor of the problem.

E. The Second Order Approach

In order to describe a discontinuity with a zero order
approach, many meshes are often required to achieve pre-
ciseness. This is the case, for instance, when the discon-
tinuities to be described are not plane, or when the cur-
rents remain confined in particular areas of the surface.
Under these conditions, the matricial systems to solve can
rapidly reach prohibitive sizes.

For a second order approach, six points of a triangular
mesh and eight points of a rectangular mesh supply func-
tions for a quadratic interpolation of the coordinates and
the currents on the mesh. The nodes are located on the
vertices and on each side of the mesh.

A second order approach, unlike the zero order ap-
proach, enables non plane meshes to be described. In the
same way as above, it is possible to achieve a matricial
system, similar to (13).

F. Determination of the Resonant Mode

The problem consists of finding %, for which system
(13) has a non-trivial solution. This is verified when

Sk = ko)

B, —Id B, By 3
= det Bz‘l BZ,Z — Id 32,3 = 0.
B By, By~ Id
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Fig. 2. Evolution of the resonant frequency as a function of the ratio plane
mirror radius over beam waist.

Condition (14) gives ky, which enables the frequency of
the resonant mode to be calculated, as well as its quality
factor (15):

f=kyC/27
Q= k/kK

Then the problem consists in finding the value of &,
which cancels the determinant in the complex plane. For
the present work, the Muller method was used [11].

When k; is determined, the eigenvector J can then be
~ computed. The great dimensions of the matrix B prevent
the use of conventional methods such as Gaussian method.
A second order iterative process gives very good results
for this case [12]. i

At this step in the study, the interest of using the BEM
appears first in relation to the geometrical parameters of
the cavity. So, to illustrate the possible of the BEM, we
compared the calculated frequencies obtained by the BEM
when the radius- of the plane mirror varies, to the fre-
quency calculated by the analytical formulation. As the
results obtained are identical when the radius of the plane
mirror is great (i.e., when the losses are low), they di-
verge when it decreases. Fig. 2 shows the evolution of
the resonant frequency of a Gaussian mode (TEMg,) as
a function of the plane mirror radius. In this figure R,
represents the radius of the plane mirror and B,, the beam
waist. This latter is a parameter of the beam in the clas-
sical description: it represents the beam radius at 1 /e of
the maximum amplitude of the field. It is important to
notice that when the diffraction losses increase, the mode
is no longer a purely Gaussian mode but a superposition
of modes where the TEMq, still remains dominant. From
this point of view, these results can be compared to the
formulation by Goubau and Schwering [7]. .

In the analytical formulations, the characteristics of the
solution depend on the symmetry of the problem: if the
mirrors are circular the solutions are of cylindrical type.

ko = kb + jk§ = (15)

The computations that we have performed have shown that -

modes with a Cartesian symmetry can be excited too: Fig-
ure 3 gives one example of such a mode.

The last illustration, which is presented in this paper,
concerns the disturbances on a TEMgo, mode, brought by
an iris placed in the center of the plane mirror of the cav-
ity. It is to be noticed that this mode can continue to exist,
only if the perturbances are weak. The simulation results

f=3764GHz

Fig. 3. Examples of modes with a Cartesian symmetry excited in a struc-
ture with a cylindrical symmetry.

presented in Fig. 4, show the surface currents computed
on the plane mirror. The iris radius is 0.1 Ay where A, is
the wavelength at the resonant frequency. The computa-
tions have shown no variation of the frequency of the
TEMg, mode, linked to the disturbance brought by the
iris. ’ oo
It is to be noticed that the Three Dimensional Boundary
Element Method can be very time consuming. The Muller
method is very reliable in the sense that it almost never
diverges, but its convergence speed is very low: it often
requires more than 20 iterations to reach the result.

IV. CHARACTERIZATION OF A FaBRY-PEROT CAVITY BY
THE BEM

A. Geﬁeral Points

The identification of the modes computed by the BEM
with the results given by the analytical models is only

~ possible by an examination of the fields of the resonant

mode. For certain modes, identification poses problems

- because it is impossible to identify them clearly to TEM,,,

modes. So the question is to know if these modes are really
excitable in a cavity or if they are only spurious modes,
linked with the method. This is the reason why the com-
putations have been compared to measurements.

* The previous method has been applied to a quasi-opti-
cal cavity, using a spherical mirror facing a flat mirror.
The spherical mirror is placed on a special mounting,
which ensures that the mirrors are aligned. The adjusting
of the distance between the mirrors is made by micro-
metric displacements. The characteristics of the cavity are

Curvature radius of the spherical mirror: 40 mm
Diameter of the spherical mirror: 70 mm
Diameter of the plane mirror: 37 mm

Mirror separation: 29.1 mm (16)
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Fig. 4. Current distribution on the plane mirror of a cavity disturbed by

an iris.
TABLE I
BEM: 96 Meshes
Zero Second Analytical Experimental
Order Order Method Results
- f=39.4GHz — f=39.3GHz
— Q = 400 —
f=38.33 GHz f=37.77 GHz f=737.78 GHz f=37.7GHz TEMgg7
O =492 0 =1193
f=36.6 GHz f=36.0GHz — f=359GHz
Q =245 Q = 1465 —

The characteristics of the cavity are measured by a re-
flectometric method. The cavity is excited by a hole, lo-
cated just in the center of the plane mirror. It is a setup
which naturally favours the modes with energy around the
axis of the cavity. All the results which are presented in
the continuation concern modes whose energy is maxi-
mum on the axis of the cavity: this enables the excited
modes to be identified. The reliability of the measure-
ments of the resonant frequency is, for the main part,
linked with the accuracy of measurements of the distance
separating the mirrors. It can be evaluated to 5 X 102
mm, which leads to an inaccuracy of about 70 MHz in the
measurements.

B. Comparison Between Experimental Results and
Models

The results obtained by the zero and second order ap-
proaches, are compared to those obtained by the analyti-
cal methods (when it is possible), and to experiments. We
recall the equation which gives the value of the resonant
frequencies.of such a structure: ‘

_C Qp+1+1) D \'?
.fp,[!q - 2D {q + —71'_ arctan [<ITO——D> :’}

a7

where

Indices p and [/ are the radial and transversal indices
respectively: they are the beam parameters.

Indice g determines the number of half wavelengths be-
tween the two resonators.

D is the distance between the reflectors and R, the cur-
vature radius of the spherical mirror.

Table I is given for a constant number of meshes.

Fig. 5 summarizes the measurements undertaken on the
cavity and the fields obtained by the BEM modeling in
the 35 GHz-40 GHz range.

As a result of this, several remarks can be made:

It is possible to compare analytical results to numerical
results only when the mode can be perfectly identified.
This can be done.by examining the fields of the resonant
mode. This was only possible for the TEM,; mode.

The zero order approach gives results whose frequen-
cies are systematically lower than the frequencies meas-
ured and lower than second order results by a factor Af/f,
of about 1%. For such an approach the meshes are plane
and the origin of the coordinates of 7 is taken at the center
of the mesh. This provokes a relative reduction in the dis-
tance between the mirrors, which is about Af/f;. This is
certainly the main reason for the inaccuracy of that ap-
proach, when it is applied to our structure. However, be-
cause of the simplicity of its implementation, it is of in-
terest to use it first to characterize complicated structures.
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Fig. 5. Response of the cavity between 35 GHz and 40 GHz: comparison
between measurement and the BEM modeling.

TABLE II
* TEMyo; MODE

Second Order Approachk

BEM 61 Nodes " 127 Nodes 217 Nodes
Uniform meshing f=37.84 GHz f=137.80 GHz f=37.77 GHz
Q = 337 Q = 886 Q0 = 1193
Meshing f=37.80 GHz f=37.76 GHz f= 37.74 GHz
nonuniformly Q = 1931 Q = 1707 . Q= 8201
concentrated
Analytical method f=37.78 GHz

Results obtained by the second order approach are very
close to experimental results. ‘

The quality coefficient compared gives a good indica-
tion about the reliability of the calculations. It is to be
noted that the second order approach gives more reliable
results. ‘

The accuracy of the results depends on the preciseness
of the description of the structure. It is foreseeable that
reliability will increase with the number of meshes. An-
other possibility consists of refining the description of the
structure where the surface currents are the highest. Table
IT gives the evolution of the results for a second order
approach for the TEMgyy; mode, when the number of
meshes varies and when the meshes are concentrated on
the center of the mirrors.

The results presented show great accuracy, even when
the number of meshes is low. The size of the matrix to be
processed increases as the square of the number of nodes

and the computing times for each iteration increase faster .

than its cube. So the number of meshes to use must be a
compromise between the preciseness to be achieved and
the computing times. The second remark that can be
made, concerns the influence of the concentration of the

meshes on the discontinuities: the results clearly show the
advantage in concentrating the number of meshes in the
areas where the currents are the greatest. '

V. CONCLUSION
The results presented in this paper clearly show that the
BEM is a very efficient method to characterize an open
cavity, especially when a second order approach is used.
For the Gaussian mode (TEMyy,), the results obtained
with the classical method are in close agreement with the
computed results and with measurements. However they
diverge when the spill-over losses of the cavity increase.
On the other hand, it is not possible to predict cettain
types of modes with the classical formulation: for the
power combiner application it is of interest to have very

.. accurate knowledge about the behavior of the cavity

around the low losses mode to be excited.

Finally, the main interest of this method, in addition to
its accuracy, is its great fiexibility. The BEM computes
currents on a discretized structure. So coupling elements
like the iris are very naturally described as belonging to
the cavity: the numerical computations associated remain
unchanged. '
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These reasons allow equivalent performances to those
presented here to be envisaged, when the coupling ele-
ments will be taken into account.
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