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Abstract—In order to describe very closely the operation of a
quasi-optical multidiode oscillator using a Fabry–Perot cavity,
each component must be modeled. This paper presents the de-
scription of such a cavity by the Boundary Element Method

(BEM).

The difficulties of adapting classical models to this practical

case are discussed in the first part of the paper and justify the

use of a more complete and flexible method such as the three

dimensional Boundary Element Method. Two levels of ap-
proach are succinctly described in the second part. The first

one, which has been called zero order, is quite classical. The

second one is the most original part of the study and has been
called the Second Order Approach. The evolution of the com-
puted results as a function of the number and the distribution
of the meshes is given in the last part. They are compared to
analytical results and measurements.

I. INTRODUCTION

sINCE THE emergence of solid state microwave

sources, many studies have been made to improve their

performance. Nowadays, in the millimetric frequency

range, such solid state oscillators are a good alternative

in cases where low power capabilities are required. In or-

der to obtain higher power levels, the concept of multi-

diode oscillators was introduced in 1970 by Kurokawa [1].

Since then, several solutions have been proposed, but

generally these solutions are not usable in the millimetric

wavelength range because of mechanical problems.

The design of power adders using quasi-optical reson-

ators does not seem to be limited by such problems [2],

[3]. However the mastering of all the design problems

requires great accuracy in the determination of the elec-

tromagnetic characteristic of the device. In relation with

the general problem of power adding in the millimetric

wavelength range, this paper deals with the modeling of

a Fabry-Perot resonator by the Boundary Element Method
(BEM).

In the first part, we discuss the classical approach of

quasi-optical cavities and present the limitations to their

application in the case under study. In the second part,

the basis of the BEM is recalled and its application to the
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Fab~-Perot resonator is presented. Two levels of ap-

proach, corresponding to different levels of approxima-

tion are presented: the second one is the improvement to

the method that we propose. In the last part of the paper,

theoretical results are compared to experimental data.

II. MODELING OF THE QUASI-OPTICAL CAVITY: THE

CLASSICAL APPROACH

The model which is classically used to describe the Fa-

bry-Perot cavity was mainly developed in the sixties for

MASER cavities characterization. Assuming certain hy-

potheses, analytical formulation enables the main char-

acteristics to be determined: that is to say, the resonance

frequencies, and the field pattern of each mode. The sim-

plifying hypotheses suppose that the solutions are similar

to those of plane waves, and lead to different formulations

according to the way that the problem is treated.

For the formulation proposed by A. G. Fox and T. Li

[4] the evolution of the electromagnetic fields is followed

during a “there and back journey” into the cavity. Start-

ing from one reflector, the electromagnetic fields succes-

sively undergo a diffraction, from the first reflector to the

second one, then a reflection off the second reflector, a

diffraction towards the first reflector, to be finally re-

flected of it. If the phases are identical before and after

the journey, the cavity resonates. The previous simplify-

ing hypotheses, applied to this formulation, lead to the

Huygens–Fresnel hypothesis [5]: the diffraction angles are

very small.

Another way to formulate the problem is to solve the

Helmholtz equation [6] directly. The simplifying hypoth-

esis now expresses that the propagating constant of each

mode is 2T/& where A is the wavelength at the resonat

frequency. These two formulations give the same results.

A generalization of these formulations has been given

by G. Goubau and F. Schwering [7] to take into account

the diffraction losses on the reflectors; the solution is ex-

pressed as a series of cylindrical waves.

In order to characterize modes, it is possible to repre-

sent these by their current distribution in the mirrors.

Some examples of two types of modes are presented in

Fig. 1. Two kinds of representations of the current distri-

bution are given in the paper: with arrows which gives the

module and the direction of current lines over the mirrors
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Fig. 1. CmTentdistribution for(a) aGuassian mode and(b) fortwo loss
modes.

and a meshed representation which only gives the module

of the currents.

In the case of low-loss modes, the use of the analytical

model leads to very good results for determining the char-

acteristics of the resonant modes of the cavity. To be able

to optimize the operation of the power adder using a quasi-

optical cavity, the entire device must be modeled. In such

ular on the discontinuities themselves, when a set of in-

tegral equations is required. For example, when discon-

tinuities are infinitely conductive metallic planes, we have

(1)

The radiated fields ~ and ~ are expressed in terms of

fictitious sources, through the Green functions [9]:

[

— +- (ii x i) “ F(5!V)]w.
JLd/-l

-+
E (r’) and ~ (r’) are the electric and magnetic fields,

radiated by the aperture of surface S.
ii is the normal vector to cM.

Y? is the Green function: * = exp ( –j/tZ/) /R in the

a-device the-cavity is no longer isolated but is coupled to three dimensional case.

sources and to a load by coupling elements which will If no external field is applied, the boundary conditions

disturb the operation of the cavity. classical models are (1) applied to (2) gives

not very easy to adapt to this practical case, because they

do Qot have the flexibility of numerical methods, espe- ~ fi(r’) = ~~
11

(ii(r) X Z(r)) X ?V(r, r’) dS (3)
cially when the latter describe the structures by a mesh- S
ing. We have chosen to apply the BEM to this problem

-+
and assuming J = Z x H, to be the electric current on

and we present the results obtained with a Fa.bry-perot the discontinuities, (3) becomes

cavity. The aim of this paper is not only to give a new

description of this kind of cavity, but to demonstrate the ; l(r’) = & Fi(r’) x
!!

~(r) X ~ ‘Z(r, r’) dS. (4)
applicability of this numerical method to such a structure.

Reliability is verified by a comparison with the analytical

approach and with experimental results.

II. DESCRIPTION OF THE METHOD

A. General Points

Today, numerical methods are widely used to solve

physical problems in various areas such as elastostatics or

electromagnetism. The Finite-Element Method is cer-

tainly the most well-known of all: it allows very compli-

cated structures to be described with very great accuracy.

However, it often requires a very large computer memory

to solve the final matrix equation: the structure must be

described in its entirely.

The BEM was proposed in the 80’s [8] in order to rep-

resent a structure through its discontinuities: only the

boundary conditions are written. Thus the problem can be

treated with one dimension loss by the BEM than by the

Finite-Element Method. ‘The discontinuities are treated by

the BEM as radiating apertures: the superposition of the

fields radiated by the discontinuities, allows the fields to

be determined everywhere on the structure, and in partic-

S

The currents through the metallic parts of the resonator

are described by (4). If ? # d the latter expresses the

existence of a resonant mode.

The aim of the BEM is to solve such an equation.

B. Discretization of the Structure

The first step consists of discretizing the structure on a

meshing, and projecting the (4) onto it. Equation (4) can

then be transformed into

(5)

where N represents the number of meshes. And using

(6)
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(5) becomes

(7)

In the previous system the index “i” refers to the point

where the current is calculated, and the index “j” to the

sources of the fields. The calculated currents are linked

field sources by A Y8 (with (a, @ = 1 “ “ “ 3), whose

values are listed as follows:

(8)

(9)

(lo)

(11)

(12)

C. Transformation of the Integral System Into a Linear

System

System (7) is an eigen integral system, with ‘‘ 1 + jO”

as the eigenvalue. Such a system, with this form, is not

easily computable. This step is intended to transform the

latter into a l~ear system, assuming some simplifying hy-

potheses on J.

Two simplifying levels can be considered:

The zero order approach is very close to the description

presented by W. Geyi and W. Hongshi [10]. They have

applied this description to rectangular, cylindrical and

spherical cavity resonators.

The second order approach, which is the most original

part of the study, enables the accuracy of the results ob-

tained to be improved. In this way the description is more

realistic and more complete than the former.

D. The Zero Order Approach

For a zero order approach, the electric current ~ is as-

sumed to be constant on the mesh. This allows J;, J; and

J; to be extracted from the integrals of the previous sys-

tem. Thus, the latter can be expressed as -

In this equation, the Bi,j(i, j = 1 “ . “ 3) are complex,

and only depend on k = k‘ + jk”, the propagation con-

stant throughout the Green function V: this is the un-

known factor of the problem.

E. %e Second Order Approach

In order to describe a discontinuity with a zero order

approach, many meshes are often required to achieve pre-

ciseness. This is the case, for instance, when the discon-

tinuities to be described are not plane, or when the cur-

rents remain confined in particular areas of the surface.

Under these conditions, the matricial systems to solve can

rapidly reach prohibitive sizes.

For a second order approach, six points of a triangular

mesh and eight points of a rectangular mesh supply func-

tions for a quadratic interpolation of the coordinates and

the currents on the mesh. The nodes are located on the

vertices and on each side of the mesh.

A second order approach, unlike the zero order ap-

proach, enables non plane meshes to be described. In the

same way as above, it is possible to achieve a matricial

system, similar to (13).

F. Determination of the Resonant Mode

The problem consists of finding k. for which system

(13) has a non-trivial solution. This is verified when

f (k = kO)

= det

B 1,1 – Zd Bl,2 Bl, ~

B2, , B 2,2 – Zd Bz,~

1

= o.

B3, , B~,2 B3,3 – Id

(14)
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Fig. 2. Evolution of theresonant frequency asafunction of the ratio plane
mirror radius over beam waist.

Condition (14) givesko, which enables the frequency of

theresonant rnodetob ecalculated, as well as its quality

factor (15):

[

f = k&Ci2~
ko=k~+jk~+ (15)

Q = k~ik~ “

Then the problem consists in finding the value of kO

which cancels the determinant in the complex plane. For

the present work, the Muller method was u~ed [11].

When k. is determined, the eigenvector J can then be

computed. The great dimensions of the matrix B prevent

the use of conventional methods such as Gaussian method.

A second order iterative process gives very good results

for this case [12].

At this step in the study, the interest of using the BEM

appears first in relation to the geometrical parameters of

the cavity. So, to illustrate the possible of the BEM, we

compared the calculated frequencies obtained by the BEM

when the radius of the plane mirror varies, to the fre-

quency calculated by the analytical formulation. As the

results obtained are identical when the radius of the plane

mirror is great (i. e., when the losses are low), they di-

verge when it decreases. Fig. 2 shows the evolution of

the resonant frequency of a Gaussian mode (TEMooJ as

a function of the plane mirror radius. In this figure, Rp
represents the radius of the plane mirror and BW the beam

waist. This latter is a parameter of the beam in the clas-

sical description: it represents the beam radius at 1/e of

the maximum amplitude of the field. It is important to

notice that when the diffraction losses increase, the mode

is no longer a purely Gaussian mode but a superposition

of modes where the TEMoo~ still remains dominant. From

this point of view, these results can be compared to the

formulation by Goubau and Schwering [7].

In the analytical formulations, the characteristics of the

solution depend on the symmetry of the problem: if the

mirrors are circular the solutions are of cylindrical type.

The computations that we have performed have shown that

modes with a Cartesian symmetry can ble excited too: Fig-

ure 3 gives one example of such a mocle.
The last illustration, which is presented in this paper,

concerns the disturbances on a TEMoo~ mode, brought by

an iris placed in the center of the plane mirror of the cav-

ity. It is to be noticed that this mode can continue to exist,

only if the perturbances are weak. The simulation results

f = 37,64 GHz

Fig. 3.Examples of modes with a Cartesian symmetry excited in a struc-
ture with a cylindrical symmetry.

presented in Fig. 4, show the surface currents computed

on the plane mirror. The iris radius is 0.1 A. where A. is

the wavelength at the resonant frequency. The computa-

tions have shown no variation of the frequency of the

TEMoo~ mode, linked to the disturbance brought by the

iris.

It is to be noticed that the Three Dimensional Bounda~”

Element Method can be very time consuming. The Muller

method is very reliable in the sense that it almost never

diverges, but its convergence speed is very low: it often

requires more than 20 iterations to reach the result.

IV. CHARACTERIZATION OF A FABRY-PEROT CAVITY BY

THE BEM

A, General Points

The identification of the modes computed by the BEM

with the results given by the analytical models is only

possible by an examination of the fields of the resonant

mode. For cert:ain modes, identification poses problems

because it is impossible to identify them clearly to TEMP1~

modes. So the question is to know if these modes are really

excitable in a cavity or if they are only spurious modes,

linked with the method. This is the reason why the com-

putations have been compared to measurements.

The previous method has been applied to a quasi-opti-

cal cavity, using a spherical mirror facing a flat mirror.

The spherical mirror is placed on a special mounting,

which ensures that the mirrors are aligned. The adjusting

of the distance between the mirrors is made by micro-

metric displacements. The characteristics of the cavity are

{

Curvature raclius of the spherical mirror: 40 mm

Diameter of the spherical mirror: 70 mm

Diameter of the plane mirro~ 37 mm

Mirror separation: 29.1 mm (16)
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Fig. 4. Current distribution on the plane mirror of a cavity disturbed by
an iris.

TABLE I

BEM: 96 Meshes

Zero Second Analytical Experimental

Order Order Method Results

— ~ = 39.4 GHz ~= 39.3 GHz
— Q = 400

~ = 38.33 GHz f = 37.77 GHz f = 37.78 GHz f = 37.7 GHz TEM007
Q = 492 Q= 1193

f = 36.6 GHz f = 36.0 GHz f = 35.9 GHz

Q = 245 Q = 1465

The characteristics of the cavity are measured by a re-

flectometric method. The cavity is excited by a hole, lo-

cated just in the center of the plane mirror. It is a setup

which naturally favours the modes with energy around the

axis of the cavity. All the results which are presented in

the continuation concern modes whose energy is maxi-
mum on the axis of the cavity: this enables the excited

modes to be identified. The reliability of the measure-

ments of the resonant frequency is, for the main part,

linked with the accuracy of measurements of the distance

separating the mirrors. It can be evaluated to 5 X 10’2

mm, which leads to an inaccuracy of about 70 MHz in the

measurements.

B. Comparison Between Experimental Results and

Models

The results obtained by the zero and second order ap-

proaches, are compared to those obtained by the analyti-

cal methods (when it is possible), and to experiments. We

recall the equation which gives the value of the resonant

frequencies of such a structure:

[

(2p+ l+l)
.&l,q=g cl+ ~ at-ctan[(Ro~~)’’2~)

(17)

where

Indices p and 1 are the radial and transversal indices

respectively: they are the beam parameters.

Indite q determines the number of half wavelengths be-

tween the two resonators.

D is the distance between the reflectors and RO the cur-

vature radius of the spherical mirror.

Table I is given for a constant number of meshes.

Fig. 5 summarizes the measurements undertaken on the

cavity and the fields obtained by the BEM modeling in

the 35 GHz–40 GHz range.

As a result of this, several remarks can be made:

It is possible to compare analytical results to numerical

results only when the mode can be perfectly identified.

This can be done. by examining the fields of the resonant

mode. This was only possible for the TEM007 mode.

The zero order approach gives results whose frequen-

cies are systematically lower than the frequencies meas-

ured and lower than second order results by a factor A~l~o

of about 1%. For such an approach the meshes are plane

and the origin of the coordinates of? is taken at the center

of the mesh. This provokes a relative reduction in the dis-

tance between the mirrors, which is about A~/~O. This is

certainly the main reason for the inaccuracy of that ap-

proach, when it is applied to our structure. However, be-

cause of the simplicity of its implementation, it is of in-

terest to use it first to characterize complicated structures.
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Response of the cavity between 35 GHz and 40 GHz: comparison

between measurement and the BEM modeling.

TABLE 11
TEMOO,MODE

Second Order Approach
—

BEM 61 Nodes 127 Nodes 217 Nodes

Uniform meshing f = 37.84 GHz ~ = 37.80 GHz f = 37.77 GHz
Q = 337 Q = 886 Q= 1193

Meshing f = 37.80 GHz f = 37.76 GHz f = 37.74 GHz
nonuniformly Q = 1931 Q = 1707 Q = 8201
concentrated

Analytical method f=: 37.78 GHz

Results obtained by the second order approach are very

close to experimental results.

The quality coefficient compared gives a good indica-

tion about the reliability of the calculations. It is to be

noted that the second order approach gives more reliable

results.

The accuracy of the results depends on the preciseness

of the description of the structure. It is foreseeable that

reliability will increase with the numlber of meshes. An-

other possibility consists of refining th~edescription of the

structure where the surface currents are the hHghest. Table

II gives the evolution of the results for a second order

approach for the TEM007 mode, when the number of

meshes varies and when the meshes are concentrated on

the center of the mirrors.

The results presented show great accuracy, even when

the number of meshes ‘is low. The size of the matrix to be

processed increases as the square of the numlber of nodes

and the computing times for each itemtion increase faster

than its cube. So the number of meshes to use must be a

compromise between the preciseness to be achieved and

the computing times. The second remark that can be

made, colncerns the influence of the concentration of the

meshes on the dliscontinuities: the results clearly show the

advantage in concentrating the number of meshes in the

areas where the currents are the greatest.

V. CONCLUSION

The results presented in this paper clearly show that the

BEM is a very efficient method to characterize an open

cavity, especially when a second order approach is used.
For the (laussian mode (TEMoo~), the results obtained

with the classical method are in close agreement with the

computed results and with measurements. However they

diverge when tlhe spill-over losses of the cavity increase.

On the other hand, it is not possible to predict certain

types of modes with the classical formulation: for the

power combiner application it is of interest to have very

accurate knowledge about the behavior of the cavity

around the low losses mode to be excited.

Finally, the main interest of this method, in addition to

its accuracy, is its great flexibility. The IflEM computes

currents on a discretized structure. So coupling elements

like the iris are very naturally described as belonging to

the cavity: the numerical computations associated remain

unchanged.
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These reasons allow equivalent performances to those

presented here to be envisaged, when the coupling ele-

ments will be taken into account.
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